Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

12-(4-Methoxyphenyl)-10-phenyl-3,4,5,6,8,10-hexaazatricyclo[7.3.0.0^{2,6}]dodeca-1(9),2,4,7,11-pentaene

Mukesh M. Jotani,^a‡ Rina D. Shah^b and Edward R. T. Tiekink^c*

^aDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, ^bDepartment of Chemistry, M. G. Science Institute, Navrangpura, Ahmedabad, Gujarat 380 009, India, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 7 March 2010; accepted 7 March 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.041; wR factor = 0.142; data-to-parameter ratio = 7.1.

In the title compound, $C_{19}H_{14}N_6O$, the fused 12-membered tetrazolo/pyrimidine/pyrrole ring system is almost planar (r.m.s. deviation = 0.013 Å). The 4-methoxyphenyl and phenyl substituents on the pyrrole ring are both twisted with respect to the fused-ring system [dihedral angles = 25.39 (18) and 36.42 (18)°, respectively]. Intramolecular C-H···N interactions occur. In the crystal, molecules pack into layers in the *ac* plane and these are connected along the *b* axis *via* C-H··· π and π - π [centroid–centroid separation = 3.608 (3) Å] interactions.

Related literature

For background to the biological activity of fused tetrazolopyrimidines, see: Shishoo & Jain (1992); Desai & Shah (2006). For related structures, see: Jotani *et al.* (2010*a,b*); Shah *et al.* (2010). For semi-empirical quantum chemical calculations, see: Stewart (2009).

Experimental

Crystal data $C_{19}H_{14}N_6O$ $M_r = 342.36$

Orthorhombic, $Pna2_1$ a = 9.3537 (7) Å

‡ Additional correspondence author, e-mail: mmjotani@rediffmail.com.

organic compounds

Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K $0.35 \times 0.25 \times 0.20 \text{ mm}$

Data collection

b = 23.6045 (19) Å

c = 7.1543 (6) Å

Z = 4

V = 1579.6 (2) Å³

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.967, T_{\rm max} = 0.981$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.142$ S = 1.121666 reflections 236 parameters 16155 measured reflections 1666 independent reflections 1344 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.051$

 $\begin{array}{l} 1 \text{ restraint} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{\text{max}} = 0.50 \text{ e } \text{ Å}^{-3} \\ \Delta \rho_{\text{min}} = -0.27 \text{ e } \text{ Å}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C14-C19 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C8−H8···N4	0.93	2.50	3.257 (5)	138
C15−H15···N5	0.93	2.57	3.020 (5)	111
$C11 - H11 \cdots Cg1^i$	0.93	2.91	3.684 (5)	141
$C13-H13c\cdots Cg1^{ii}$	0.96	2.72	3.459 (5)	134

Symmetry codes: (i) $-x, -y, z - \frac{1}{2}$; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors are thankful to the Department of Science and Technology (DST), and the SAIF, IIT Madras, Chennai, India, for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5355).

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

Desai, N. D. & Shah, R. D. (2006). Synthesis, 19, 3275-3278.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Jotani, M. M., Shah, R. D. & Jasinski, J. P. (2010a). Acta Cryst. E66, 0212-0213.
- Jotani, M. M., Shah, R. D., Jasinski, J. P. & Butcher, R. J. (2010b). Acta Cryst. E66, 0574.

Shah, R. D., Jotani, M. M. & Jasinski, J. P. (2010). Acta Cryst. E66, o601–o602. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shishoo, C. J. & Jain, S. K. (1992). J. Heterocycl. Chem. 29, 883-893.
- Stewart, J. P. (2009). *MOPAC2009. Stewart Computational Chemistry*. Available from web: http://OpenMOPAC.net.
- Westrip, S. P. (2010). publCIF. In preparation.

Acta Cryst. (2010). E66, o805 [doi:10.1107/S160053681000869X]

12-(4-Methoxyphenyl)-10-phenyl-3,4,5,6,8,10-hexaazatricyclo[7.3.0.0^{2,6}]dodeca-1(9),2,4,7,11-pentaene

M. M. Jotani, R. D. Shah and E. R. T. Tiekink

Comment

Interest in fused tetrazolopyrimidines relates, in part, to their biological activities (Shishoo & Jain, 1992; Desai & Shah, 2006). In continuation of complementary structural studies (Jotani *et al.* 2010*a*; Jotani *et al.* 2010*b*; Shah *et al.* 2010), the synthesis and X-ray crystal structure determination of the title compound, (I), are reported herein.

The molecule of (I) comprises a central pyrimidine ring (N1,N5,C1–C4) to which is fused a tetrazolo ring (N1–N4,C2) and a di-substituted pyrrole ring (N6,C3–C6), Fig. 1. These atoms form a plane with dihedral angles formed between the pyrimidine and the tetrazolo and pyrrole rings being 0.1 (3) and 1.5 (3) °, respectively; the dihedral angle formed between the tetrazolo and pyrrole rings is 1.6 (3) °. The r.m.s. deviation of the 12 non-hydrogen atoms comprising the fused ring system is 0.013 Å. The presence of intramolecular C–H…N interactions, Table 1, are noted and these result in the formation of S(6) and S(7) rings. The 4-methoxyphenyl and benzene substituents on the pyrrole ring are not co-planar with the fused-ring system as seen in the C3–C6–C7–C8 and C4–N6–C14–C15 torsion angles of 24.2 (9) and -39.1 (7) °, respectively.

In the crystal packing, the molecules pack into layers parallel to $(0\ 1\ 0)$ with connections between the layers provided by C–H··· π , Table 1, and π - π interactions between the five-membered tetrazolo and pyrrole rings [Cg(N1–N4,C2)···Cg(N6,C3–C6)ⁱ = 3.608 (3) Å, angle between planes = 5.0 (3) ° for *i*: 1-*x*, -*y*, -1/2+*z*], Fig. 2.

The Semi-empirical Quantum Chemical Calculations were performed on the experimental structure using the MO-PAC2009 programme (Stewart, 2009) to optimize the structure with the Parametrization Model 6 (PM6) approximation together with the restricted Hartree-Fock closed-shell wavefunction; minimizations were terminated at an r.m.s. gradient of less than 0.01 kJ mol⁻¹ Å⁻¹. The most significant difference between the experimental and calculated structures is found in the relative orientation of the 4-methoxyphenyl ring with respect to the pyrrol ring to which it is bonded. This is quantified in the C3–C6–C7–C8 torsion angle of $38.9 \circ cf$. 24.2 (9) \circ in the experimental structure. The orientation of the pyrrole-benzene ring remains unaffected as seen in the (torsion angles is C4–N6–C14–C15 torsion angle of $-38.8 \circ cf$. -39.1 (7) \circ (experiment).

Experimental

To a well stirred mixture of 5-(4-methoxyphenyl)-7-phenyl-4-chloro-7*H*-pyrrolo[2,3-d]pyrimidine (5 mmol) and Aliquat 336 (0.5 mmol) in toluene (25 ml) was added sodium azide (6 mmol) in water (5 ml). The reaction mixture was stirred under reflux conditions for 1.5 h. Thereafter, the two phases were separated. The aqueous phase was extracted with toluene and the combined organic layers were washed with water. The excess solvent was distilled off under reduced pressure. The obtained solid was dried to yield (I) which was crystallized from dioxane to obtain the final product (70 % yield, m.pt. 489–491 K). The crystals used for X-ray crystallography were obtained by slow evaporation from the an ethanol solution of (I).

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.93-0.96 Å) and refined as riding with $U_{iso}(H) = 1.2-1.5U_{eq}$ (parent atom). In the absence of significant anomalous scattering effects, 1378 Friedel pairs were averaged in the final refinement.

Figures

Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.

Fig. 2. A view in projection down the *a* axis in (I), highlighting the C–H··· π and π – π interactions (purple dashed lines). Colour code: O, red; N, blue; C, grey; and H, green.

12-(4-Methoxyphenyl)-10-phenyl-3,4,5,6,8,10- hexaazatricyclo[7.3.0.0^{2,6}]dodeca-1(9),2,4,7,11-pentaene

Crystal data	
$C_{19}H_{14}N_{6}O$	F(000) = 712
$M_r = 342.36$	$D_{\rm x} = 1.440 {\rm Mg m}^{-3}$
Orthorhombic, <i>Pna</i> 2 ₁	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2c -2n	Cell parameters from 2330 reflections
a = 9.3537 (7) Å	$\theta = 2.0 - 32.0^{\circ}$
<i>b</i> = 23.6045 (19) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 7.1543 (6) Å	T = 293 K
V = 1579.6 (2) Å ³	Block, colourless
Z = 4	$0.35 \times 0.25 \times 0.20 \text{ mm}$

Data collection

Bruker Kappa APEXII CCD diffractometer	1666 independent reflections
Radiation source: fine-focus sealed tube	1344 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.051$
ω and ϕ scan	$\theta_{\text{max}} = 25.9^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 10$
$T_{\min} = 0.967, \ T_{\max} = 0.981$	$k = -28 \rightarrow 26$
16155 measured reflections	$l = -8 \rightarrow 8$
$T_{\min} = 0.967, T_{\max} = 0.981$ 16155 measured reflections	$k = -28 \longrightarrow 26$ $l = -8 \longrightarrow 8$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.142$	H-atom parameters constrained
<i>S</i> = 1.12	$w = 1/[\sigma^2(F_0^2) + (0.0924P)^2 + 0.1003P]$ where $P = (F_0^2 + 2F_c^2)/3$
1666 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
236 parameters	$\Delta \rho_{max} = 0.50 \text{ e} \text{ Å}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

					. 02.
Fractional atomic coordinates and	isotropic or	equivalent isotropic	displacement	parameters	(A*)
	1	1 1	1	1	· /

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.1311 (2)	-0.24532 (10)	0.1991 (5)	0.0436 (7)
N1	0.6887 (3)	0.03688 (12)	0.2217 (6)	0.0388 (7)
N2	0.8226 (3)	0.01376 (15)	0.2170 (8)	0.0538 (9)
N3	0.8028 (3)	-0.04038 (15)	0.2108 (8)	0.0570 (10)
N4	0.6627 (3)	-0.05488 (13)	0.2095 (7)	0.0490 (9)
N5	0.5225 (3)	0.11037 (11)	0.2330 (6)	0.0394 (8)
N6	0.2784 (3)	0.07783 (11)	0.2260 (5)	0.0345 (7)
C1	0.6538 (4)	0.09319 (16)	0.2303 (7)	0.0434 (9)
H1	0.7269	0.1199	0.2342	0.052*
C2	0.5911 (3)	-0.00622 (14)	0.2167 (8)	0.0368 (8)
C3	0.4447 (3)	0.00972 (13)	0.2204 (7)	0.0326 (7)
C4	0.4226 (3)	0.06828 (13)	0.2276 (7)	0.0338 (8)
C5	0.2112 (3)	0.02605 (13)	0.2160 (7)	0.0374 (8)
H5	0.1126	0.0211	0.2128	0.045*
C6	0.3086 (3)	-0.01734 (14)	0.2112 (7)	0.0348 (8)
C7	0.2701 (3)	-0.07795 (14)	0.2027 (7)	0.0336 (8)
C8	0.3593 (4)	-0.12011 (15)	0.2688 (6)	0.0413 (11)
H8	0.4494	-0.1105	0.3136	0.050*

C9	0.3172 (4)	-0.17651 (15)	0.2697 (7)	0.0430 (11)
Н9	0.3781	-0.2043	0.3161	0.052*
C10	0.1848 (4)	-0.19110 (13)	0.2015 (7)	0.0356 (8)
C11	0.0954 (4)	-0.14989 (15)	0.1288 (6)	0.0380 (9)
H11	0.0071	-0.1597	0.0786	0.046*
C12	0.1390 (4)	-0.09411 (16)	0.1317 (7)	0.0382 (9)
H12	0.0782	-0.0665	0.0842	0.046*
C13	0.2110 (4)	-0.28780 (15)	0.2954 (7)	0.0487 (11)
H13A	0.3060	-0.2896	0.2449	0.073*
H13B	0.1650	-0.3239	0.2802	0.073*
H13C	0.2157	-0.2785	0.4259	0.073*
C14	0.2042 (3)	0.13107 (13)	0.2232 (7)	0.0339 (8)
C15	0.2549 (4)	0.17606 (15)	0.3270 (7)	0.0375 (9)
H15	0.3365	0.1721	0.4002	0.045*
C16	0.1822 (4)	0.22714 (15)	0.3202 (7)	0.0448 (10)
H16	0.2173	0.2582	0.3860	0.054*
C17	0.0586 (4)	0.23249 (15)	0.2172 (8)	0.0462 (9)
H17	0.0097	0.2668	0.2137	0.055*
C18	0.0080 (4)	0.18610 (15)	0.1186 (7)	0.0456 (10)
H18	-0.0765	0.1892	0.0511	0.055*
C19	0.0800 (4)	0.13608 (15)	0.1191 (7)	0.0405 (9)
H19	0.0461	0.1055	0.0502	0.049*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0420 (14)	0.0314 (12)	0.057 (2)	-0.0069 (10)	-0.0019 (15)	0.0016 (15)
N1	0.0246 (14)	0.0442 (16)	0.048 (2)	0.0005 (12)	-0.0045 (17)	0.0019 (19)
N2	0.0259 (15)	0.062 (2)	0.073 (3)	0.0029 (14)	0.003 (2)	0.000 (3)
N3	0.0294 (16)	0.057 (2)	0.085 (3)	0.0061 (14)	0.005 (2)	0.000 (3)
N4	0.0281 (15)	0.0476 (19)	0.071 (3)	0.0056 (12)	0.0001 (18)	-0.002 (2)
N5	0.0326 (15)	0.0351 (15)	0.050 (2)	-0.0048 (12)	-0.0031 (17)	0.0032 (18)
N6	0.0292 (14)	0.0285 (14)	0.046 (2)	0.0018 (10)	-0.0029 (17)	0.0011 (16)
C1	0.0353 (19)	0.044 (2)	0.051 (3)	-0.0068 (15)	-0.003 (2)	0.002 (2)
C2	0.0297 (16)	0.0390 (18)	0.042 (2)	0.0006 (14)	0.001 (2)	-0.001 (2)
C3	0.0287 (16)	0.0324 (16)	0.0366 (19)	0.0006 (13)	0.001 (2)	-0.001 (2)
C4	0.0301 (16)	0.0333 (17)	0.038 (2)	-0.0008 (13)	-0.0004 (18)	0.0011 (19)
C5	0.0277 (16)	0.0322 (18)	0.052 (2)	-0.0003 (13)	0.000 (2)	-0.002 (2)
C6	0.0284 (16)	0.0319 (17)	0.044 (2)	0.0006 (13)	0.000 (2)	0.004 (2)
C7	0.0290 (17)	0.0308 (17)	0.041 (2)	0.0017 (13)	0.0057 (18)	-0.0007 (18)
C8	0.0305 (19)	0.038 (2)	0.055 (3)	-0.0003 (15)	-0.0042 (17)	-0.0009 (18)
C9	0.034 (2)	0.0303 (18)	0.065 (3)	0.0055 (15)	-0.0018 (19)	0.0029 (18)
C10	0.0358 (18)	0.0299 (17)	0.041 (2)	-0.0039 (13)	0.0079 (19)	-0.0023 (18)
C11	0.0292 (17)	0.042 (2)	0.042 (2)	-0.0046 (15)	-0.0006 (17)	0.0028 (19)
C12	0.0294 (18)	0.0359 (19)	0.049 (2)	0.0050 (15)	0.0026 (18)	0.0034 (18)
C13	0.059 (3)	0.0315 (19)	0.055 (3)	0.0006 (18)	0.003 (2)	0.0022 (19)
C14	0.0313 (17)	0.0298 (16)	0.041 (2)	0.0008 (13)	0.002 (2)	0.0026 (19)
C15	0.0334 (19)	0.0349 (19)	0.044 (2)	0.0012 (15)	-0.0025 (17)	0.0013 (18)

C16	0.048 (2)	0.035 (2)	0.051 (3)	0.0011 (17)	0.002 (2)	-0.0088 (19)
C17	0.047 (2)	0.0377 (19)	0.054 (3)	0.0110 (15)	0.003 (2)	0.001 (2)
C18	0.038 (2)	0.043 (2)	0.056 (3)	0.0061 (16)	-0.010 (2)	0.004 (2)
C19	0.038 (2)	0.0316 (18)	0.052 (3)	-0.0037 (15)	-0.006 (2)	-0.0005 (18)
Geometric param	neters (Å, °)					
O1—C10		1.375 (4)	C8—C	C9	1.3	388 (5)
O1—C13		1.428 (5)	C8—H	18	0.9	9300
N1—N2		1.367 (4)	С9—С	210	1.3	374 (5)
N1—C2		1.367 (4)	С9—Н	19	0.9	9300
N1-C1		1.370 (5)	C10—	-C11	1.3	384 (5)
N2—N3		1.292 (5)	C11—	-C12	1.3	379 (5)
N3—N4		1.355 (4)	C11—	-H11	0.9	9300
N4—C2		1.330 (4)	C12—	-H12	0.9	9300
N5—C1		1.294 (4)	C13—	-H13A	0.9	9600
N5—C4		1.364 (4)	C13—	-H13B	0.9	9600
N6—C4		1.368 (4)	C13—	-H13C	0.9	9600
N6—C5		1.376 (4)	C14—	-C15	1.:	380 (5)
N6—C14		1.435 (4)	C14—	-C19	1.:	385 (5)
CI—HI		0.9300	C15—	-C16	1.385 (5	
C2—C3		1.420 (4)	C15-	-H15	0.9	9300
$C_3 - C_4$		1.399 (5)	C16—		1.:	377(6)
C3—C6		1.426 (4)	C16—	-H10	0.9	9300
C5—C6		1.3/1 (4)	C17—	-C18	1.2	380 (0) 2200
C5—H5		0.9300	C1/	-H1/	0.9	9300
C_{0}		1.4//(4)	C18—	-C19 1110	1.2	339 (S) 2200
C/-C12		1.380(5)	C18—	-H18 1110	0.9	9300
C/—C8		1.382 (3)	019—	-019	0.5	9300
C10—O1—C13		117.2 (3)	C10—	-С9—Н9	12	0.2
N2—N1—C2		108.3 (3)	C8—C	С9—Н9	12	0.2
N2—N1—C1		127.3 (3)	C9—C	C10—O1	12	4.5 (3)
C2—NI—CI		124.4 (3)	C9—(C10—C11	12	0.1 (3)
N3—N2—N1		105.4 (3)	01-0	C10—C11	11	5.4 (3)
N2—N3—N4		112.9 (3)	C12—	-CIICI0	11	9.1 (3)
C2—N4—N3		105.6 (3)	C12—	-CII—HII	12	0.4
C1 - N5 - C4		114.9 (3)	C10—	-C11—H11	12	0.4
C4 - N6 - C3		107.7(3)	C11-	C12 - C7	12	2.1 (3)
C4—N6— $C14$		128.4(3)	C11—	C12—H12	11	8.9
C_{5} No C_{14}		123.8(3)	C/—(Л2—Н12 С12—Н12А	11	8.9
N_{3} C_{1} H_{1}		122.0 (3)	01-0	ЛЭ—ПІЗА ГІЗ ЦІЗР	10	19.5
NJ-C1-H1		119.0	U12A	C12 U12D	10	9.5
$NI = CI = \Pi I$		117.0	П13А- 01 (—стэ—птэр ~13нтас	10	9.5
N4 - C2 - C3		107.9 (3)	UI—(U12 A	H12C	10	9.5
N1 - C2 - C3		135.0(3)	птэА- µ12р	H13C	10	9.5
C4 - C3 - C2		113 9 (3)	C15	-C14C19	10	0.8 (3)
$C_{4} C_{3} C_{4}$		108 2 (3)	C15	-C14N6	12	0.0(3)
C_{+}		100.2(3)	C19	-C14 N6	12	0.0 (3)
02-03-00		137.0(3)	019—	-C1+	11	J.2 (J)

N5-C4-N6	123.7 (3)	C14—C15—C16	118.8 (4)
N5—C4—C3	128.3 (3)	C14—C15—H15	120.6
N6—C4—C3	107.9 (3)	C16—C15—H15	120.6
C6—C5—N6	111.2 (3)	C17—C16—C15	120.7 (4)
С6—С5—Н5	124.4	С17—С16—Н16	119.6
N6—C5—H5	124.4	C15—C16—H16	119.6
C5—C6—C3	104.9 (3)	C16—C17—C18	119.1 (3)
C5—C6—C7	124.2 (3)	С16—С17—Н17	120.4
C3—C6—C7	130.9 (3)	С18—С17—Н17	120.4
C12—C7—C8	117.6 (3)	C19—C18—C17	121.1 (4)
C12—C7—C6	120.0 (3)	С19—С18—Н18	119.5
C8—C7—C6	122.4 (3)	C17—C18—H18	119.5
C7—C8—C9	121.4 (3)	C18—C19—C14	119.4 (4)
С7—С8—Н8	119.3	С18—С19—Н19	120.3
С9—С8—Н8	119.3	С14—С19—Н19	120.3
C10—C9—C8	119.6 (3)		
C2—N1—N2—N3	-0.4 (7)	C2—C3—C6—C5	-177.7 (6)
C1—N1—N2—N3	179.5 (5)	C4—C3—C6—C7	-179.5 (5)
N1—N2—N3—N4	0.5 (8)	C2—C3—C6—C7	3.6 (11)
N2—N3—N4—C2	-0.5 (7)	C5—C6—C7—C12	23.8 (8)
C4—N5—C1—N1	0.3 (7)	C3—C6—C7—C12	-157.7 (5)
N2—N1—C1—N5	179.6 (5)	C5—C6—C7—C8	-154.3 (5)
C2—N1—C1—N5	-0.5 (8)	C3—C6—C7—C8	24.2 (9)
N3—N4—C2—N1	0.2 (6)	C12—C7—C8—C9	-2.1 (7)
N3—N4—C2—C3	-179.7 (7)	C6—C7—C8—C9	176.0 (4)
N2—N1—C2—N4	0.1 (6)	C7—C8—C9—C10	0.8 (7)
C1—N1—C2—N4	-179.8 (5)	C8—C9—C10—O1	-178.6 (4)
N2—N1—C2—C3	-179.9 (5)	C8—C9—C10—C11	1.3 (7)
C1—N1—C2—C3	0.2 (8)	C13—O1—C10—C9	8.3 (6)
N4—C2—C3—C4	-179.7 (6)	C13—O1—C10—C11	-171.7 (4)
N1—C2—C3—C4	0.3 (7)	C9—C10—C11—C12	-2.1 (7)
N4—C2—C3—C6	-2.9 (12)	O1-C10-C11-C12	177.8 (4)
N1—C2—C3—C6	177.1 (6)	C10-C11-C12-C7	0.8 (7)
C1—N5—C4—N6	-178.8 (5)	C8—C7—C12—C11	1.3 (7)
C1—N5—C4—C3	0.2 (8)	C6—C7—C12—C11	-176.9 (4)
C5—N6—C4—N5	178.6 (5)	C4—N6—C14—C15	-39.1 (7)
C14—N6—C4—N5	2.3 (8)	C5—N6—C14—C15	145.1 (4)
C5—N6—C4—C3	-0.6 (5)	C4—N6—C14—C19	142.5 (5)
C14—N6—C4—C3	-176.9 (5)	C5—N6—C14—C19	-33.3 (7)
C2—C3—C4—N5	-0.6 (8)	C19-C14-C15-C16	-2.3 (6)
C6—C3—C4—N5	-178.3 (5)	N6-C14-C15-C16	179.3 (4)
C2—C3—C4—N6	178.6 (4)	C14-C15-C16-C17	2.3 (7)
C6—C3—C4—N6	0.9 (6)	C15—C16—C17—C18	-0.5 (7)
C4—N6—C5—C6	0.1 (5)	C16—C17—C18—C19	-1.4 (7)
C14—N6—C5—C6	176.6 (5)	C17—C18—C19—C14	1.4 (7)
N6—C5—C6—C3	0.4 (6)	C15-C14-C19-C18	0.5 (7)
N6—C5—C6—C7	179.2 (5)	N6-C14-C19-C18	178.8 (4)
C4—C3—C6—C5	-0.8 (6)		

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14–C19 ring.				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C8—H8…N4	0.93	2.50	3.257 (5)	138
C15—H15…N5	0.93	2.57	3.020 (5)	111
C11—H11····Cg1 ⁱ	0.93	2.91	3.684 (5)	141
C13—H13c····Cg1 ⁱⁱ	0.96	2.72	3.459 (5)	134
Symmetry codes: (i) $-x$, $-y$, $z-1/2$; (ii) $-x+1/2$	2, y-1/2, z+1/2.			

